Journal of Organometallic Chemistry, 169 (1979) C9-C11 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

THE REACTION OF BASE (OH⁻) WITH BINARY OSMIUM CARBONYLS: CLUSTER FRAGMENTATION

GLYN R. JOHN, BRIAN F.G. JOHNSON and JACK LEWIS University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain) (Received January 11th, 1979)

Summary

The compound $O_{5_5}(CO)_{16}$ reacts with base (OH⁻) to produce [$O_{5_5}(CO)_{15}$]²⁻. The compounds $O_{5_6}(CO)_{18}$, $O_{5_7}(CO)_{21}$ and $O_{5_8}(CO)_{23}$ react with the same base to undergo cluster fragmentation to yield the dianions [$O_{5_5}(CO)_{15}$]²⁻, [$O_{5_6}(CO)_{18}$]²⁻ and [$O_{5_7}(CO)_{20}$]²⁻, respectively.

It is well established that reaction of binary carbonyl compounds with base (OH⁻) leads to the formation of anionic species according to the general scheme:

$M_m(CO)_n + OH \rightarrow [M_m(CO)_{n-1}(COOH)]$	$)_{n-1}(\text{COOH})]^{-1}$ (1	$[M_m(CO)_n]$	\rightarrow	$(CO)_n + OH^-$	Mm
--	---------------------------------	---------------	---------------	-----------------	----

$[M_m(CO)_{n-1}(COOH)]^- \rightarrow$	$[\mathrm{M}_m(\mathrm{CO})_{n-1}\mathrm{H}]^- + \mathrm{CO}_2$	(2)
---------------------------------------	---	-----

 $[\mathbf{M}_m(\mathbf{CO})_{n-1}\mathbf{H}]^- + \mathbf{OH}^- \rightarrow [\mathbf{M}_m(\mathbf{CO})_{n-1}]^{2-} + \mathbf{H}_2\mathbf{O}$ (3)

The overall reaction, which corresponds to the formation of a dianionic species and the loss of a carbon monoxide ligand as CO_2 , applies equally well to both mono-metal and cluster carbonyl compounds, e.g.:

 $\begin{array}{rcl} \operatorname{Fe}(\operatorname{CO})_5 &+ & \operatorname{2OH}^- & \rightarrow & [\operatorname{Fe}(\operatorname{CO})_4]^{2-} &+ & \operatorname{CO}_2 &+ & \operatorname{H}_2\operatorname{O} \\ \operatorname{Rh}_6(\operatorname{CO})_{16} &+ & \operatorname{2OH}^- & \rightarrow & [\operatorname{Rh}_6(\operatorname{CO})_{15}]^{2-} &+ & \operatorname{CO}_2 &+ & \operatorname{H}_2\operatorname{O} \\ \end{array}$

We now report studies of the reaction of OH⁻ (KOH/MeOH) with the binary osmium clusters $Os_5 (CO)_{16}$, $Os_6 (CO)_{18}$, $Os_7 (CO)_{21}$ and $Os_8 (CO)_{23}$. Reaction of base (OH⁻) with $Os_5 (CO)_{16}$ follows the usual course to produce $[Os_5 (CO)_{15}]^{2^-}$:

$$O_{S_5}(CO)_{16} + 2OH^- \rightarrow [O_{S_5}(CO)_{15}]^{2-} + H_2O + CO_2$$

In contrast, reaction with the Os_6 , Os_7 and Os_8 clusters leads to cluster fragmentation action:

$$Os_6(CO)_{18} \xrightarrow{OH} [Os_5(CO)_{15}]^{2-}$$
 (4)

$$O_{s_{7}}(CO)_{21} \xrightarrow{OH^{-}} [O_{s_{6}}(CO)_{18}]^{2-}$$

$$O_{s_{8}}(CO)_{23} \xrightarrow{OH^{-}} [O_{s_{7}}(CO)_{20}]^{2-}$$
(5)
(6)

In each case the dianion was isolated as its $[(Ph_3 P)_2 N]^*$ salt and was fully characterised on the basis of analytical and spectroscopic data. Reaction of these dianions with acid (H⁺) produces the dihydrido clusters H₂ Os₅ (CO)₁₅, H₂ Os₆ (CO)₁₈ and H₂ Os₇ (CO)₂₀. The species $[Os_5 (CO)_{15}]^{2-}$, $[Os_6 (CO)_{18}]^{2-}$, H₂ Os₅ (CO)₁₅ and H₂ Os₆ (CO)₁₈ have been reported previously [1]. The anion $[Os_7 (CO)_{20}]^{2-}$ and corresponding dihydride H₂ Os₇ (CO)₂₀ are new. Interestingly, the novel hydrido-carbido species H₂ Os₇ (CO)₁₉ C has been obtained in very small yield from the reaction of Os₃ (CO)₁₂ with water [2] at elevated temperatures.

The compound $Os_5 (CO)_{16}$ with six skeletal electron pairs is, according to the Wade Theory, electron-precise and, as a consequence has a regular trigonal bipyramidal geometry. The other members of the series $Os_6 (CO)_{18} (S = 6)$, $Os_7 (CO)_{21} (S = 7)$, and $Os_8 (CO)_{23} (S = 7)$ are electron-deficient and, as a consequence, have capped-polyhedral geometries (Table 1). From the information at present available it would appear that the electron-precise $Os_5 (CO)_{16}$ (S = 6) undergoes reaction to produce $[Os_5 (CO)_{15}]^{2-} (S = 6)$ which is also electron-precise. In contrast, the electron-deficient compounds $Os_6 (CO)_{18}$, $Os_7 (CO)_{21}$ and $Os_8 (CO)_{23}$ undergo reaction to remove a capping group $Os(CO)_3$ and generate an electron-precise species, $[Os_5 (CO)_{15}]^{2-} (S = 6)$ or $[Os_6 (CO)_{18}]^{2-} (S = 7)$, or a "less electron-deficient" species $[Os_7 (CO)_{20}]^{2-}$ (S = 7).

The generality of this approach has yet to be justified. At present osmium is unique in giving a series of binary carbonyls $Os_m(CO)_n$ ranging from m = 1 to m = 8, and spanning electron-rich systems e.g. $Os_3(CO)_{12}$ (S = 6), to electron-deficient systems, e.g. $Os_8(CO)_{23}$ (S = 7).

TABLE 1

Carbonyl	S (= Number of skeletal pairs)	Structure			
		Predicted	Found ^a		
Os ₅ (CO) ₁₆	6	Trigonal bipyramid	Trigonal bipyramid		
Os ₆ (CO) ₁₈	7	Capped trigonal bipyramid	Capped trigonal bipyramid		
Os ₇ (CO) ₂₁	7	Capped octahedron	Capped		
Os ₅ (CO) ₂₃	7	Bicapped octahedron	?		
$[Os_5(CO)_{15}]^{2-}$	6	Trigonal bipyramid	?		
$[Os_6(CO)_{18}]^{2-}$	7	Octahedron	Octahedron		
$[Os_7(CO)_{20}]^{2-}$	7	Capped octahedron	?		

THE STRUCTURES OF THE BINARY CARBONYLS OF OSMIUM AS A FUNCTION OF SKELETAL ELECTRON PAIRS

^aBy X-ray analysis.

Thus, these reactions may be summarised as:

$$Os_m(CO)_n \xrightarrow{OH^-} [Os_{m-1}(CO)_{n-3}]^{2-} + "Os(CO)_3"$$

$$m = 6 \quad n = 18$$

$$m = 7 \quad n = 21$$

$$m = 8 \quad n = 23$$

No other osmium-containing product has been isolated from these reactions to date, and further work is in progress.

It is noteworthy that other electron-precise clusters, e.g. $Rh_6 (CO)_{16}$ and $Ru_6 C(CO)_{17}$ (S = 7), undergo reaction to produce the electron-precise dianions $[Rh_6 (CO)_{15}]^{2-}$ and $[Ru_6 C(CO)_{16}]^{2-}$, in contrast to the behaviour shown by the electron-deficient $Os_6 (CO)_{18}$,

Acknowledgements

We thank Johnson Matthey Co. Ltd. for the loan of OsO_4 and the SRC for financial support.

References

- (b) C.R. Eady, J.J. Guy, B.F.G. Johnson, J. Lewis, M.C. Malaterta and G.M. Sheldrick, Chem. Commun., (1976) 807.
- 2 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton, (1977) 838.

¹⁽a) C.R. Eady, B.F.G. Johnson and J. Lewis, Chem. Commun., (1976) 302: