Journal of Organometallic Chemistry, 169 (1979) C9-C11
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

THE REACTION OF BASE (OH) WITH BINARY OSMIUM CARBONYLS: CLUSTER FRAGMENTATION

GLYN R. JOHN, BRIAN F.G. JOHNSON and JACK LEWIS
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW (Great Britain)
(Received January 11th, 1979)

Summary

The compound $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ reacts with base $\left(\mathrm{OH}^{-}\right)$to produce $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}$. The compounds $\mathrm{Os}_{6}(\mathrm{CO})_{18}, \mathrm{Os}_{7}(\mathrm{CO})_{21}$ and $\mathrm{Os}_{8}(\mathrm{CO})_{23}$ react with the same base to undergo cluster fragmentation to yield the dianions $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-},\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$ and $\left[\mathrm{Os}_{7}(\mathrm{CO})_{20}\right]^{2-}$, respectively.

It is well established that reaction of binary carbonyl compounds with base $\left(\mathrm{OH}^{-}\right)$leads to the formation of anionic species according to the general scheme:

$$
\begin{align*}
& \mathrm{M}_{m}(\mathrm{CO})_{n}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{M}_{m}(\mathrm{CO})_{n-1}(\mathrm{COOH})\right]^{-} \tag{I}\\
& {\left[\mathrm{M}_{m}(\mathrm{CO})_{n-1}(\mathrm{COOH})\right]^{-} \rightarrow\left[\mathrm{M}_{m}(\mathrm{CO})_{n-1} \mathrm{H}\right]^{-}+\mathrm{CO}_{2}} \tag{2}\\
& {\left[\mathrm{M}_{m}(\mathrm{CO})_{n-1} \mathrm{H}\right]^{-}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{M}_{m}(\mathrm{CO})_{n-1}\right]^{2-}+\mathrm{H}_{2} \mathrm{O}} \tag{3}
\end{align*}
$$

The overall reaction, which corresponds to the formation of a dianionic species and the loss of a carbon monoxide ligand as CO_{2}, applies equally well to both mono-metal and cluster carbonyl compounds, e.g.:
$\mathrm{Fe}(\mathrm{CO})_{5}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Rh}_{6}(\mathrm{CO})_{16}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Rh}_{6}(\mathrm{CO})_{15}\right]^{2-}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
We now report studies of the reaction of $\mathrm{OH}^{-}(\mathrm{KOH} / \mathrm{MeOH})$ with the binary osmium clusters $\mathrm{Os}_{5}(\mathrm{CO})_{16}, \mathrm{Os}_{6}(\mathrm{CO})_{18}, \mathrm{Os}_{7}(\mathrm{CO})_{21}$ and $\mathrm{Os}_{8}(\mathrm{CO})_{23}$. Reaction of base $\left(\mathrm{OH}^{-}\right)$with $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ follows the usual course to produce $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}$:
$\mathrm{Os}_{5}(\mathrm{CO})_{16}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
In contrast, reaction with the $\mathrm{Os}_{6}, \mathrm{Os}_{7}$ and Os_{5} clusters leads to cluster fragmentation action:
$\mathrm{Os}_{6}(\mathrm{CO})_{18} \xrightarrow{\mathrm{OH}^{-}}\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}$
$\mathrm{Os}_{7}(\mathrm{CO})_{21} \xrightarrow{\mathrm{OH}^{-}}\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$
$\mathrm{Os}_{8}(\mathrm{CO})_{23} \xrightarrow{\mathrm{OH}^{-}}\left[\mathrm{Os}_{7}(\mathrm{CO})_{20}\right]^{2-}$
In each case the dianion was isolated as its $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]^{+}$salt and was fully characterised on the basis of analytical and spectroscopic data. Reaction of these dianions with acid $\left(\mathrm{H}^{+}\right)$produces the dihydrido clusters $\mathrm{H}_{2} \mathrm{Os}_{5}(\mathrm{CO})_{15}$, $\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}$ and $\mathrm{H}_{2} \mathrm{Os}_{7}(\mathrm{CO})_{20}$. The species $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-},\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$, $\mathrm{H}_{2} \mathrm{Os}_{5}(\mathrm{CO})_{15}$ and $\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}$ have been reported previously [1]. The anion $\left[\mathrm{Os}_{7}(\mathrm{CO})_{20}\right]^{2-}$ and corresponding dihydride $\mathrm{H}_{2} \mathrm{Os}_{7}(\mathrm{CO})_{20}$ are new. Interestingly, the novel hydrido-carbido species $\mathrm{H}_{2} \mathrm{Os}_{7}(\mathrm{CO})_{19} \mathrm{C}$ has been obtained in very small yield from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with water [2] at elevated temperatures.

The compound $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ with six skeletal electron pairs is, according to the Wade Theory, electron-precise and, as a consequence has a regular trigonal bipyramidal geometry. The other members of the series $\mathrm{Os}_{6}(\mathrm{CO})_{18}(S=6)$, $\mathrm{Os}_{7}(\mathrm{CO})_{21}(S=7)$, and $\mathrm{Os}_{8}(\mathrm{CO})_{23}(S=7)$ are electron-deficient and, as a consequence, have capped-polyhedral geometries (Table 1). From the information at present available it would appear that the electron-precise $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ $(S=6)$ undergoes reaction to produce $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}(S=6)$ which is also electron-precise. In contrast, the electron-deficient compounds $\mathrm{Os}_{6}(\mathrm{CO})_{18}$, $\mathrm{Os}_{7}(\mathrm{CO})_{21}$ and $\mathrm{Os}_{8}(\mathrm{CO})_{23}$ undergo reaction to remove a capping group $\mathrm{Os}(\mathrm{CO})_{3}$ and generate an electron-precise species, $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}(S=6)$ or $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}(S=7)$, or a "less electron-deficient" species $\left[\mathrm{Os}_{7}(\mathrm{CO})_{20}\right]^{2-}$ ($S=7$).

The generality of this approach has yet to be justified. At present osmium is unique in giving a series of binary carbonyls $\mathrm{Os}_{m}(\mathrm{CO})_{n}$ ranging from $m=1$ to $m=8$, and spanning electron-rich systems e.g. $\mathrm{Os}_{3}(\mathrm{CO})_{12}(S=6)$, to elec-tron-deficient systems, e.g. $\mathrm{Os}_{8}(\mathrm{CO})_{23}(S=7)$.

TABLE 1
THE STRUCTURES OF THE BINARY CARBONYLS OF OSMIUM AS A FUNCTION OF SKELETAL ELECTRON PAIRS

Carbonyl	$S(=$ Number of skeletal pairs)	Structure	
		Predicted	Found ${ }^{\text {a }}$
$\mathrm{Os}_{5}(\mathrm{CO})_{16}$	6	Trigonal bipyramid	Trigonal bipyramid
$\mathrm{Os}_{6}(\mathrm{CO})_{18}$	7	Capped trigonal bipyramid	Capped trigonal bipyramid
$\mathrm{Os}_{7}(\mathrm{CO})_{21}$	7	Capped octahedron	Capped octahedron
$\mathrm{Os}_{5}(\mathrm{CO})_{23}$	7	Bicapped octahedron	?
$\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}$	6	Trigonal bipyramid	$?$
$\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$	7	Octahedron	Octahedron
$\left[\mathrm{Os}_{7}(\mathrm{CO})_{20}\right]^{2-}$	7	Capped octahedron	?

[^0]Thus, these reactions may be summarised as:
$\mathrm{Os}_{m}(\mathrm{CO})_{n} \xrightarrow{\mathrm{OH}^{-}}\left[\mathrm{Os}_{m-1}(\mathrm{CO})_{n-3}\right]^{2-}+{ }^{2} \mathrm{Os}(\mathrm{CO})_{3} "$
$m=6 \quad n=18$
$m=7 n=21$
$m=8 \quad n=23$
No other osmium-containing product has been isolated from these reactions to date, and further work is in progress.

It is noteworthy that other electron-precise clusters, e.g. $\mathrm{Rh}_{6}(\mathrm{CO})_{16}$ and $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}(S=7)$, undergo reaction to produce the electron-precise dianions $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{15}\right]^{2-}$ and $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}\right]^{2-}$, in contrast to the behaviour shown by the electron-deficient $\mathrm{Os}_{6}(\mathrm{CO})_{18}$,

Acknowledgements

We thank Johnson Matthey Co. Ltd. for the loan of OsO_{4} and the SRC for financial support.

References

I(a) C.R. Eady, B.F.G. Johnson and J. Lewis, Chem. Commun., (1976) 302;
(b) C.R. Eady, J.J. Guy, B.F.G. Johnson, J. Lewis, M.C. Malaterta and G.M. Sheldrick, Chem, Commun., (1976) 807.

2 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton, (1977) 838.

[^0]: ${ }^{\boldsymbol{a}} \mathrm{By}$ X-ray analysis.

